A Shorter, Simpler, Stronger Proof of the Meshalkin–Hochberg–Hirsch Bounds on Componentwise Antichains1
نویسندگان
چکیده
Meshalkin’s theorem states that a class of ordered p-partitions of an n-set has at most max ( n a1,...,ap ) members if for each k the k parts form an antichain. We give a new proof of this and the corresponding LYM inequality due to Hochberg and Hirsch, which is simpler and more general than previous proofs. It extends to a common generalization of Meshalkin’s theorem and Erdős’s theorem about r-chain-free set families.
منابع مشابه
A Shorter, Simpler, Stronger Proof of the Meshalkin-Hochberg-Hirsch Bounds on Componentwise Antichains
Meshalkin’s theorem states that a class of ordered p-partitions of an n-set has at most max ( n a1,...,ap ) members if for each k the k parts form an antichain. We give a new proof of this and the corresponding LYM inequality due to Hochberg and Hirsch, which is simpler and more general than previous proofs. It extends to a common generalization of Meshalkin’s theorem and Erdős’s theorem about ...
متن کاملSome lower bounds for the $L$-intersection number of graphs
For a set of non-negative integers~$L$, the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots, l}$ to vertices $v$, such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$. The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...
متن کاملA New Proof of FDR Control Based on Forward Filtration
For multiple testing problems, Benjamini and Hochberg (1995) proposed the false discovery rate (FDR) as an alternative to the family-wise error rate (FWER). Since then, researchers have provided many proofs to control the FDR under different assumptions. Storey et al. (2004) showed that the rejection threshold of a BH step-up procedure is a stopping time with respect to the reverse filtration g...
متن کاملA note on circuit lower bounds from derandomization
We present an alternate proof of the result by Kabanets and Impagliazzo that derandomizing polynomial identity testing implies circuit lower bounds. Our proof is simpler, scales better, and yields a somewhat stronger result than the original argument.
متن کاملOn Circuit Lower Bounds from Derandomization
We present an alternate proof of the result by Kabanets and Impagliazzo (2004) that derandomizing polynomial identity testing implies circuit lower bounds. Our proof is simpler, scales better, and yields a somewhat stronger result than the original argument. ACM Classification: F.1.2, F.1.3 AMS Classification: 68Q10, 68Q15, 68Q17
متن کامل